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Abstract. The interaction and diffraction of a classical electromagnetic wave by a thin slab 
characterised by a periodic dielectric permeability is studied rigorously, thereby complet- 
ing previously existing studies. New integral equations for the induction vector, in terms 
of a suitable Green function, are presented, and a condition which ensures the con- 
vergence of their iterations is obtained. A bound for the error of the usual Debye-Born- 
Rayleigh-Gans approximation to the diffraction amplitudes is given. 

1. Introduction 

The interaction and diffraction of a classical electromagnetic wave by a slab charac- 
terised by a periodic dielectric permeability is an interesting physical process which 
appears in several different situations: (i) diffraction of x-rays by thin crystals 
(Batterman and Cole 1964, Ewald 1965, James 1963, Landau and Lifchitz 1969, 
Slater 1967, Zachariasen 1945); (ii) diffraction of light by ultrasonic waves (Born and 
Wolf 1965); (iii) diffraction of light by a hologram (Vienot et a1 1971, and references 
therein). From a theoretical standpoint, the subject is a well defined branch of 
electromagnetic scattering theory, but in order to achieve an understanding of it 
comparable to that already reached about other scattering phenomena, several inter- 
esting and open problems should be solved. 

Two of them are: ( a )  to set up a proper treatment of the electromagnetic field 
through integral equations (the most natural framework for dealing with scattering 
problems), which take into account its transverse (divergenceless) nature and, at the 
same time, its interaction with a periodic structure; (b) to control mathematically the 
convergence of those integral equations and the diffraction amplitudes. 

This paper will provide solutions to the above problems ( a )  and (b). Sections 2 
and 3 will present the relevant Green functions, and new and suitable integral 
equations for the induction vector, as well as a condition which implies the con- 
vergence of the iterations of those integral equations. In 0 4, the diffraction ampli- 
tudes are discussed, and a bound for the error of the customary Debye-Born- 
Rayleigh-Gans approximation is given. Estimates and applications are discussed in 
8 5 .  

0305-4770/78/0009-1855$01.00 0 1978 The Institute of Physics 1855 



1856 R F Alvarez-Estrada and M L Calvo 

2. Formulation of the problem 

We consider two vectors d 1  = (al, 0) and d2 = (a2, 0), u1 and a2 being two-dimensional 
vectors with al,  a2 # 0, and regard the direction orthogonal to the 0 1 - 0 2  plane as the z 
axis. The position of any point in space is determined by 2 = ( I ,  z ) ,  I being two- 
dimensional. Inside a macroscopically, homogeneous, isotropic and stationary infinite 
medium, there is a slab of thickness a, which occupies the region -a /2  < z < + a / 2  and 
has an infinite extension in the 61-62 plane. 

A classical monochromatic electromagnetic wave comes in from z = --CO in the 
remote past, with wavevector K = (K, K 3 )  = (K1,  Kz, K3) and polarisation index A (A 
taking only two values), and approaches the slab. 

In the medium, which has constant dielectric permeability eo, vanishing macro- 
scopic conductivity and magnetic permeability equal to that of the vacuum, we shall 
represent the wave for later convenience by the induction vector do@, K, A ) =  
bo@, A )  exp(iK. f) (all time-dependent factors being factored out). Here, &(K, A )  
is a complex polarisation vector such that K. do@, A ) =  0 and (a, p = 1 , 2 , 3 )  

By assumption, the slab has zero electric charge and conductivity, magnetic 
permeability equal to that of the vacuum and dielectric permeability (in general, 
frequency -dependent) 

E = € ( I ,  2) # E o ,  -a12 < z < +a12 

fu l f i l l ingE(I+nla l+n2a2,z)=~(I ,z ) foranynl ,n2=0,  *l, *2,  . . . .  
The interaction and diffraction, transmission and reflection of the full electromag- 

netic wave will be described by the divergenceless complex induction vector, 
d(f, K, A) .  

Maxwell’s equations and the previous assumptions lead easily to the wave equa- 
tion (Gaussian units being used) 

2 outside the slab 
f inside the slab 

(At + K *)d (f, K, A ) = 

where 

f ( 2 )  = K 2 (  1 - I )d + E T  x - @ In E ) X  @ x d). 
EO 

One has 7 .  f =  0. In order to determine D(3, K, A), it will be quite convenient, using 
standard techniques, to combine the above wave equation and the information on the 
incoming wave into the following integral equation for any f: 

We have used the following tensor Green function (GT = (G;fs), cy, p = 1 , 2 , 3 )  (Calvo 
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and Durhn 1975): 

instead of the usual Green function (Newton 1966) 

while F a @ ( $ )  diverges as l/1iI3. On the other hand, GiB is divergenceless throughout 
all space, whereas raa is not (see Calvo and Durln 1975). These properties will make 
G’$ far more convenient than regarding the determination of d(f, E, A),  as we 
shall see. To start with, the use of G’;fs makes equation (2.4) automatically consistent 
with P . b = 0, while that of rae, in a similar integral equation, would require further 
work in order to verify such a condition. Another more important advantage of G;fs 
will show up when we try to set up a convergent iterative determination of d(f,E, A ) .  

Although equation (2.4) can be formally iterated as it stands, it is rather difficult to 
study mathematically the convergence of the resulting series of iterations. In fact, two 
difficulties arise: (i) the periodicity of E ( &  z )  and the fact that the integration over 1’ 
extends over an infinite region (a typical feature when diffraction occurs); (ii) the 
presence of derivatives of d inside the integrals whenever V E  # O  (a direct 
consequence of Maxwell’s equations and the previous assumptions). Accordingly, in 
order to cope with those difficulties, we shall perform in the next section two different 
transformations which will lead to a new integral equation for d(f, K, A). The latter 
will enable one to study and establish rigorously the convergence of its corresponding 
series of iterations. 

3. The new integral equation and its convergence 

3.1. The periodicity problem: first transformation 

Due to the periodicity of E in the dl-& plane, one has 

d ( l + n ~ a ~ + n ~ a ~ ,  z ,  K,A)=exp[iK. (nlal+n2a2)]6(1, z, K,A) 
nl ,  n2 = 0, * l ,  *2, . . . . (3.1.1) 

In order to justify this property notice that: (i) if one looks for solutions of the wave 
equation (2.2) as a suitable superposition of plane waves, equation (3.1.1) is fulfilled 
by any term of the superposition; (ii) equation (3.1.1) is the proper generalisation of 
the well known Bloch theorem for electronic wavefunctions in crystals (Ziman 1964); 
(iii) if one considers the formal iterations of equation (2.4), replaces G:@ by its Fourier 
integral representation (2.5) and E by its Fourier series expansions and manipulates, 
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equation (3.1.1) is seen to be verified by each iterate. Equation (3.1.1) will be fully 
consistent with all our later developments. Let denote the finite region determined 
by I' = O,u1, 4 2 ,  u1 + a2, in the u1-u2 plane. 

By regarding the whole integration region for I' in equation (2.4) as the union of 
infinitely many copies of a, using the periodicity of E and equation (3.1.1), (2.4) can 
be transformed into: 

b(I, Z,  E, h)=b&g, A)+ 
+a/2 

d I' dz' gT(I  - 1', z - z ' )J ( I ' ,  2') (3.1.2) L 
(3.1.3) 

A direct, although lengthy, calculation, where use is made of the Fourier integral 
representation for GZB (equation (2.5)), the Poisson sum formula (Morse and Fesh- 
bach 1953) and the residue theorem, leads to an alternative representation for 
(the structural transverse Green function): 

where, if d3 = (0, 0, 1) then: 

and 

and on the other hand (a, /3 = 1,2): 

(3.1.5) 

Notice that equation (3.1.3) is useful for studying the short-distance behaviour of 
(as (I, z ) +  0, the term n l  = 112 = 0 dominates), while the representation (3.1.4-5) 

is essential to obtain the long-distance behaviour of Yfs, which, in turn, will lead us 
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later to the diffraction amplitudes. The asymptotic behaviour of %:@(I - I ’ ,  z - 2’) as 
z + fm for fixed 1,l‘ and z’ is 

Y&(l- 1‘, z - 2 ’ )  

*(K~-K’(~~~~))’/~(Z -z’)]} o0(K: ( W I ~ ) A ~ ) ~ D : ( K :  ( W Z ~ ) A ’ ) ~ .  
A ,  

(3.1.6) 

Here d(K,  K )  denotes the finite set of pairs (nl, nz) such that K Z ~ K Z ( n 1 n 2 )  (as any 
pair (nl, nz) not fulfilling this condition is associated with a contribution to (3.1.4) 
which vanishes exponentially). 

R: (nlnZ)= (K(nlnZ), *(~2-KZ(nlnZ))’/2)= (K: (nlnZ)l, K: (nlnZ)Z, K: (nln2)3) 

and the complex polarisation vectors Do(K: (nlnz), A ’ )  (A’ taking only two values) 
fulfill: 

(3.1.7) 

3.2. Elimination of derivatives: second transformation 

The second transformation leads from equation (3.1.2), which still contains deriva- 
tives of D, to the final integral equation, which is free of them. For that purpose: (i) 
one recalls equation (2.3) and appeals to standard vector identities in order to replace 
derivatives of b by derivatives of and %z8 plus certain divergences; (ii) one uses 
Green’s identities for the finite three-dimensional integration region appearing in 
equation (3.1.2) in order to transform those divergences into surface terms; (iii) one 
realises that all surface terms cancel due to the periodicity of E ,  equation (3.1.1) and a 
similar property for %& The final integral equation for b = (Dl, Dz, D3) reads 

Da(1, Z, K, A)=D0(3, K, A ) a  
+a/z 3 

+ d’l’ dz’ Ua8(l - 1’, z -z’)Da(l’, z’, R, A ) ,  a = 1,2,3 h I,, (3.2.1) 
€311 

where (3’ = (1’, 2’)) 

Ua8(l-l’,2-z’) 

(3.2.2) 
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Ba = ( & I ,  Ba2, &3), &@(I ,  2 ;  I ‘ ,  z ‘ )=  %:@(I - I t ,  z -Zf)E(I’, 2 ’ )  (3.2.3) 

ca = (Cal, c a 2 ,  Ca319 
(3.2.4) 

3 

c ~ ~ ( I ,  z ;  I ! ,  z ’ ) = -  %:@(z-I‘, z-zt)EvBIPf,(ln E(]’, z ‘ ) ) ] ~ .  
%U- 1 

Here E,@ is the usual totally antisymmetric tensor with three indices ( € 1 2 3  = +l) .  

3.3. Convergence of iterations 

Upon iterating equation (3.2.1) one finds: 

Let us introduce, as I varies in SZ, z in (-CO, +CO) and (Y = 1 , 2 , 3  

+a12 3 

U = max d21f J-,, dz’ C I U ~ @ ( I  - I ‘ ,  z - z’)l. (3.3.2) 
/ 3 = 1  

Then, if U < 1,  the series (3.3.1) converges. In fact, majorising one gets: 

which, summing the resulting geometric series, leads to 

-m<z<+m 
U-1 .2 .3  

so that (3.3.1) converges and satisfies equation (3.2.1). It is important to realise that U 
is always finite, due to the use of G:/3, and provided that K2#K2(n ln2)  for any 
( n l ,  n2) and that E be physically reasonable (both P( l / e )  and P(ln E)  should be finite). 
This property can be proved as follows. 

(i) as (I, z )+  ( I ! ,  z ’ )  the behaviour of G&(I-I’, z -2’) given after equation (2.5) 
implies through equations (3.2.2-4) that any contribution to Ua0(I - I t ,  z - z ’ )  
diverges, at most, as l / [ ( l - l ’ ) ’ + ( z  -z’)’]  which gives rise to a finite integral in 
equation (3.3.2); (ii) for large 121, the integral in equation (3.3.2) is finite, since 
equation (3.1.6) contains only a finite number of contributions. Had we used the 
customary Green function raa instead of G$, then an analogous study would lead to 
an equation similar to equation (3.2.1), with a new kernel Uas which diverges as 
l/[(I- l’)’+ (z  - z ’ ) ~ ] ’  as ( I ,  z ) +  (I‘, z’), and thus forces the new integral, analogous to 
that in equation (3.3.2) to diverge. Thus a convergence study in terms of raB is not 
possible, due to its stronger divergence as If( -, 0. 



Diffraction by a thin periodic slab 1861 

4. Transmission and reflection amplitudes 

We shall study the asymptotic behaviour of b(1, z, K, A )  as z -* fa for fixed 1. 
Although for the sake of rigour one should use equation (3.2.1), as far as the 
diffraction amplitudes T*(nl,  n2 ,  1’) are concerned, it is simpler (and completely 
equivalent) to start with equation (3.1.2) and to perform later suitable partial integra- 
tions diizctly in Tf(nlnz), in order to cope with the derivatives of 8. Equation (3.1.6) 
leads to 

(4.1) 

+a/Z 

dz’ exp(-izk (n ln2) f ‘ ) .  bb (I?: ( n ~ n ~ ) A ‘ ) f ( l ’ ,  z ‘ )  (4.2) k dZ1’ L4/z 
where S-(nlnz)  = 0, for any ( n l ,  nz), S+(OO)  = 1 and S+(nlnz)  = 0 for ( n l ,  nz)# (0,O). 

T+ and T- are the transmission and reflection amplitudes, respectively. We shall 
point out that when K is such that KZ = K2(nlnz) ,  new diffracted waves are created: 
then, the convergence condition U < 1 breaks down although the diffraction ampli- 
tudes remain finite. 

The usual Debye-Born-Rayleigh-Gans (DBRG) approximation T+(nl,  nz, I’)DBRG 
is obtained upon replacing D(l’ ,  z‘, Ii?, A )  by bo(.?, K, A )  inside the integral in equation 
(4.2) (this is what is done by Landau and Lifchitz 1969) and an important problem 
consists in giving bounds for the error of the approximation Tf(nl, nz, l ’ )=  
T*(nl, nz, I’)DBRG. For this purpose, derivatives of b inside the integrals in equation 
(4.2) are again difficult to handle and a transformation similar to that leading from 
equation (3.1.2) to equation (3.2.1) has to be performed. A suitable Green identity 
together with the subsequent cancellation of surface terms due to periodicity and 
equation (3.1. l) ,  yields after some calculations: 

T*(ni, nz, A ’ ) -  T*(ni, nz, A’)DBRG 
c 

where 

r 



1862 R F Alvaret -Estrada and M L Calvo 

Define: 
+a/2 

a,(nl, n2, A ’ ) =  1 d21’ dt‘lw*(l’, t’, 111, n2, 
n - 0 / 2  

Then, some majorisations, similar to those in 0 3.3, lead to the desired bounds 

5. Estimates of the convergence condition 

We shall discuss here the convergence condition U < 1 under the following assump- 
tions. 

(1) lull and )a2) are of the same order of magnitude, with al  . u2 = 0, and a = 
Mllatl =MzIuzI, both MI and M2 being large dimensionless numbers. 

(2) The wavelength is of the order of the lattice periods, K = 0, and K 2 -  
(mlbl+ m ~ b 2 ) ~  # 0 for any ml,  m2 = 0, *1 . . . . For later application, let K be close to 
fnllbll or 4n21621, where nl, n2 are small integers (say, lsnl, n2s3) .  Then, the set 
d(0, K) contains only a small number of diffracted ‘beams’. 

(3) Let 

€ ( I ,  t ) = ~ o ( l  +Acos[(albl+a262). l+bgz ] )  

for -a/2 < z < +a/2 where A is constant and very small compared to 1, al and a 2  are 
small integers (say, al, u2 = 0,1,2) and b3 is, roughly, of the same order as allbll or 
4 2 1 .  

When lull, luzl = 1 A, these assumptions correspond qualitatively and even quan- 
titatively to x-ray diffraction by thin crystals (see references in 0 1). 

It is hard to evaluate U exactly. Fortunately, by virtue of the above assumptions, 
the dominant contributions to U and, thus, an order of magnitude estimate for it, can 
be obtained by replacing g$(I-l‘, 2-2’) in equations (3.3.2) and (3.2.2-4) by its 
asymptotic form (3.1.6), so that only the pairs (nl, n2) belonging to d(0, K) (a small 
set) contribute. In order to justify this recipe, one decomposes the full integration 
domain in equation (3.3.2) into the following regions: (i) a sphere of centre ( I ,  z )  and 
radius S chosen as a small fraction of lull, la2l; (ii) the two ‘big slices’ formed by all 
(l’, z’) such that I’  belongs to R and either -a/2 < z’< z - S or z + S < z’ < +a/2; (iii) 
the remainder. Using the expansion (3.1.3) in region (i), equation (3.1.4) in (ii) and 
both judiciously for estimates in (iii), one can see that for S <lull, (u21<< a, the 
dominant contribution to U comes precisely from region (ii) and that, moreover, the 
latter can be estimated by the asymptotic form (3.1.6) in the full integration domain. 

By using (3.3.2), (3.2.2-4) and (3,1.6), some calculations lead to the following 
approximation for U : 
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where one should take the largest value out of the possibilities + and - , higher-order 
terms in A have been neglected and 

2nu2 

2nu 2nu2 2nu2 
411 a21 4 w = K2 + b + (e) + r( b3 + r) 

2nu2 2nu1 2nm 
~ 2 2  = 63 +- 

1421 IQ11 14 ' 
w21= -+ 2-, 

2nu1 2TU2 2nu1 2TU2 
w33 =-+- 

tall IQ21 ' 1411 I421 . w j l =  b3 + 2-, 

By virtue of the above assumptions, the order of magnitude of U is determined 
essentially by aA, that is, by MlA,M2A, since the remaining terms in (5.1) will not 
modify it appreciably. For x-rays in crystals, A is usually of order 10-5-10-6 (Better- 
man and Cole 1964, Ewald 1965, Slater 1967) so that the series (3.3.1) converges for 
large values of Ml, M2 up to, say lo4 or lo5 (that is, a slab thickness up to about 

cm). For sensibly larger values of Ml, M2, the convergence of (3.3.1) may still 
hold, but it can not be warranted from our estimates. 

When the condition U < 1 holds, a bound for the absolute error of the usual DBRG 
approximation (Landau and Lifchitz 1969) can be estimated by using equations (4.9, 
(5.1) and the following bound ((nl, n2) belonging to d(0, K)): 

W32 = b3 + 2- 

In equation (5.3), higher-order terms in A have been neglected and the order of 
magnitude is determined by MIA, M2A again. Notice that an estimate for the relative 
error of the DBRG approximation is simply u/(l -U). Thus, even if U < 1 and the 
series (3.3.1) converges, this relative error may not be small when MIA, M2A are close 
to 1, that is, for not too small thickness. Hence, the corrections to the DBRG 
approximation arising from higher-order terms in (3.3.1) may be required. 
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